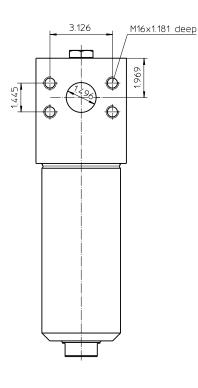
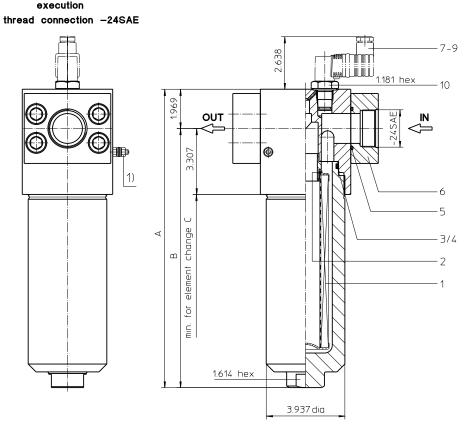

Series EH 240-450 6000 PSI


Dimensions:

type	EH 240	EH 450
connection	-24SAE of	r SAE 1 ½"
A	14.96	22.24
В	12.99	20.27
С	12.59	19.68
weight lbs.	55	71
volume tank	.22 Gal.	.41 Gal.

1) Connection for the potential equalization, only for application in the explosive area.



 \bigcirc \bigcirc ▦

execution

Pressure Filter Series EH 240-450 6000 PSI

Description:

Stainless steel-pressure filter series EH 240-450 have a working pressure up to 6000 PSI. Pressure peaks can be absorbed with a sufficient safety margin. The EH-filter is in-line mounted.

The filter element consists of star-shaped, pleated filter material, which is supported on the inside by a perforated core tube and is bonded to the end caps with a high-quality adhesive. The flow direction is from outside to inside. Filter elements are available down to $5 \ \mu m_{(c)}$.

Eaton filter elements are known for high intrinsic stability and an excellent filtration capability, a high dirt-retaining capacity and a long service life.

Eaton filter elements are available up to a pressure resistance of Δp 2320 PSI and a rupture strength of Δp 3625 PSI

Eaton filter are suitable for all petroleum based fluids, HW-emulsions, most synthetic hydraulic fluids and lubrication oils.

The internal valve is integrated into the filter head. After reaching the bypass pressure setting, the bypass valve will send unfiltered partial flow around the filter.

The reversing valve provides another level of protection for the filter element. The reverse flow will not be filtered.

1. Type index:

1.1. Complete filter: (ordering example)

EH.	240.	10VG.	HR.	Ε.	Ρ.	VA.	FS.	7.	VA.			AE	
1	2	3	4	5	6	7	8	9	10	11	12	13	

- 1 series:
- EH = stainless steel-pressure filter
- 2 nominal size: 240, 450
- 3 filter-material: 80G, 40G, 25G stainless steel wire mesh

25VG, 16VG, 10VG, 6VG, 3VG microglass

- 4 filter element collapse rating:
 - - $\Delta p = \Delta p = 2320 PSI (rupture strength <math>\Delta p = 3625 PSI$
- 5 filter element design:
 - E = single-end open
- 6 sealing material:
 - P = Nitrile (NBR) V = Viton (FPM)
- 7 filter element specification:
 - = standard
 - VA = stainless steel
- 8 process connection:
 - FS = SAE-flange connection 6000 PSI
 - UG = thread connection (only with counter flange)
- 9 process connection size:
 - $7 = 1\frac{1}{2}$
- 10 filter housing specification:

VA = stainless steel

11 specification pressure vessel:

- = standard (PED 2014/68/EU)
- IS20 = ASME VIIÌ Div.1 with ASMÉ equivalent material, see sheet-no. 55217 (max. operating pressure 4060 PSI)
- 12 internal valve:
 - = without
 - S1 = with by-pass valve Δp 51 PSI
 - S2 = with by-pass valve $\Delta p \ 102 \ PSI$
 - = reversing valve, Q \leq 55.75 GPM

13 | clogging indicator or clogging sensor:

- = without
- AOR = visual, see sheet-no. 1606
- AOC = visual, see sheet-no. 1606
- AE = visual-electric, see sheet-no. 1615
- VS5 = electronic, see sheet-no. 1619

To add an indicator/sensor to your filter, use the corresponding indicator data sheet to find the indicator details and add them to the filter assembly model code.

1.2. Filter element: (ordering example)

01E.	240.	10VG.	HR.	Ε.	Ρ.	VA	
1	2	3	4	5	6	7	l

1 series:

- 01E. = filter element according to company standard
- 2 nominal size: 240, 450
- 3 7 see type index-complete filter

Technical data:

operating temperature: operating medium max. operating pressure: test pressure: max. operating pressure at IS20: test pressure at IS20: process connection: housing material: sealing material: installation position: +14 °F to +212 °F mineral oil, other media on request 6000 PSI 8700 PSI 4060 PSI 5278 PSI SAE-flange 6000 PSI or thread connection EN10088-1.4571 (316 Ti according to AISI) Nitrile (NBR) or Viton (FPM), other materials on request vertical

Classified under the Pressure Equipment Directive 2014/68/EU for mineral oil (fluid group 2), Article 4, Para. 3. Classified under ATEX Directive 2014/34/EU according to specific application (see questionnaire sheet-no. 34279-4).

Pressure drop flow curves:

Filter calculation/sizing

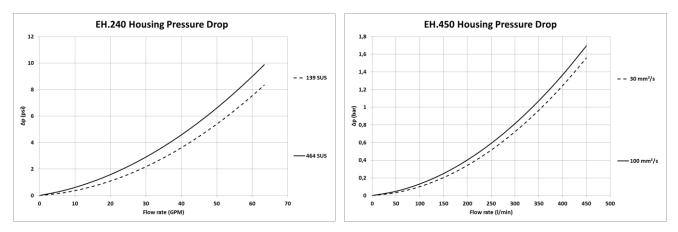
The pressure drop of the assembly at a given flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

 Δp assembly = Δp housing + Δp element Δp housing = (see $\Delta p = f(Q)$ - characteristics)

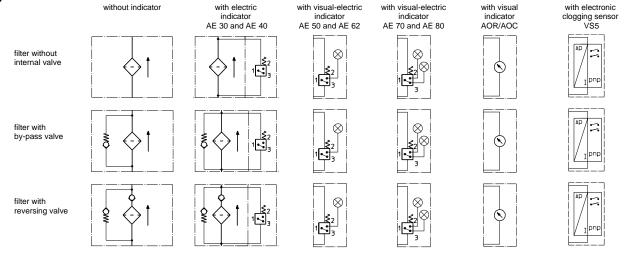
$$\Delta p \text{ element (PSI)} = Q (GPM) x \frac{MSK}{1000} \left(\frac{PSI}{GPM}\right) x v (SUS) x \frac{\rho}{0.876} \left(\frac{kg}{dm^3}\right)$$

For ease of calculation our Filter Selection tool is available online at www.eaton.com/hydraulic-filter-evaluation

Material gradient coefficients (MSK) for filter elements


The material gradient coefficients in PSI/GPM apply to mineral oil (HLP) with a density of 0.876 kg/dm³ and a kinematic viscosity of 139 SUS (30 mm²/s). The pressure drop changes proportionally to the change in kinematic viscosity and density.

EH	VG					G		
	3VG	6VG	10VG	16VG	25VG	25G	40G	80G
240	2.092	1.452	0.930	0.799	0.546	0.0651	0.0607	0.0416
450	1.126	0.782	0.500	0.430	0.294	0.0349	0.0326	0.0223


<u>∆p = f(Q) – characteristics according to ISO 3968</u>

The pressure drop characteristics apply to mineral oil (HLP) with a density of 0.876 kg/dm³. The pressure drop changes proportionally to the density.

___ 139 SUS ____ 464 SUS

Symbols:

Spare parts:

item	qty.	designation	dimen	sion	article-no.		
			EH 240	EH 450			
1	1	filter element	01E.240	01E.450			
2	1	O-ring	34 x	3,5	304338 (NBR)	304730 (FPM)	
3	1	O-ring	76 x	4	305599 (NBR)	310291 (FPM)	
4	1	support ring	84 x 3,2	x 1,5	312	2307	
5	2	O-ring	47,22 x	47,22 x 3,53		310269 (FPM)	
6	2	counter flange SAE 6000 PSI	1 1/2	2	322083		
7	1	clogging indicator visual	AOR or	AOC	see shee	t-no. 1606	
8	1	clogging indicator visual-electric	AE see sheet-no.		t-no. 1615		
9	1	clogging sensor electronic	VS5 see sheet-no.		t-no. 1619		
10	1	screw plug	2091	3-4	314442		

item 10 execution only without clogging indicator or clogging sensor

Test methods:

Filter elements are tested according to the following ISO standards:

- ISO 2941 Verification of collapse/burst resistance
- Verification of fabrication integrity ISO 2942
- ISO 2943 Verification of material compatibility with fluids
- ISO 3723 Method for end load test
- Verification of flow fatigue characteristics ISO 3724
- ISO 3968 Evaluation of pressure drop versus flow characteristics
- ISO 16889 Multi-pass method for evaluating filtration performance

North America 44 Apple Street

Tinton Falls, NJ 07724 Toll Free: 800 656-3344 (North America only) Tel: +1 732 212-4700

Europe/Africa/Middle East Auf der Heide 2

53947 Nettersheim, Germany Tel: +49 2486 809-0

Friedensstraße 41 68804 Altlußheim, Germany Tel: +49 6205 2094-0

An den Nahewiesen 24 55450 Langenlonsheim, Germany Tel: +49 6704 204-0

Greater China

No. 7, Lane 280, Linhong Road Changning District, 200335 Shanghai, P.R. China Tel: +86 21 5200-0099

Asia-Pacific

100G Pasir Panjang Road #07-08 Interlocal Centre Singapore 118523 Tel: +65 6825-1668

For more information, please email us at filtration@eaton.com or visit www.eaton.com/filtration

 \circledast 2021 Eaton. All rights reserved. All trademarks and registered trademarks are the property of their respective owners. All information and recommendations appearing in this brochure concerning the use of products described herein are based on tests believed to be reliable. However, it is the user's responsibility to determine the suitability for his own use of such products. Since the actual use by others is beyond our control, no guarantee, expressed or implied, is made by Eaton as to the effects of such use or the results to be obtained. Eaton assumes no liability arising out of the use by others of such products. Nor is the information herein to be construed as absolutely complete, since additional information may be necessary or desirable when particular or exceptional conditions or circumstances exist or because of applicable laws or government regulations.

with visual